
Evolutionary Design of a Robotic Material Defect Detection System

Gary Ballard
Dr. Tom Howsman

Mike Craft

Dynamic Concepts, Inc.
P.O. Box 97

Madison, AL 35758

email: gballard @ dynamic-concepts.corn

Dan O'Neil

Dr. Jim Steincamp

NASA, Marshall Space Flight Center, AL 35812

email: dan.oneil @msf?.nasa.gov

KEYWORDS

Evolutionary robots, neural network, genetic

algorithm

ABSTRACT

During the post-flight inspection of SSME
engines, several inaccessible regions must be

disassembled to inspect tbr detects such as
cracks, scratches, gouges, etc. An improvement

to the inspection process would be the design
and development of very small robots capable of

penetrating these inaccessible regions and
detecting the defects. The goal of this research

was to utilize an evolutionary design approach
for the robotic detection of these types of
defects. A simulation and visualization tool was

developed prior to receiving the hardware as a
development test bed. A small, commercial 017"-
the-shelf (COTS) robot was selected from

several candidates as the proof of concept robot.

The basic approach to detect the defects was to
utilize Cadmium Sulfide (CdS) sensors to detect

changes in contrast of an illuminated surface. A
neural network, optimally designed utilizing a

genetic algorithm, was employed to detect the

presence of the defects (cracks). By utilization
of the COTS robot and CdS sensors, the research

successfully demonstrated that an evolutionarily

designed neural network can detect the presence
of surface detects.

INTRODUCTION

The research consisted of three distinct tasks

including the selection of the commercial off-

the-shelf (COTS) robot, the development of a
simulation and visualization tool, and the

evolutionary design of a robot capable of

detecting defects utilizing a neural network and
genetic algorithm. The remainder of this paper

will discuss these tasks in detail, provide brief
introductions to neural networks and genetic

algorithms, and then provide the results of the

design and overall conclusions.

COTS ROBOT SELECTION

Several issues were considered in the selection

of the mobile robot. The mobile robot had to be

programmable and relatively inexpensive. Also,
it was very desirable that the robot be as small as

possible. A total of nine commercial robots
were considered during the trade study. The

PocketBot, shown in Figure 1, was selected from
the nine robots.

Note the size of the PocketBot compared to the
penny in Figure 1. The size of the PocketBot is
63 mm x 48 mm x 38 mm. The PocketBot uses

a 9V battery and is capable of serial
communication.

EVOLUTIONARY DESIGN

The basic approach in the evolutionary design

was to utilize photo-resistive CdS sensors to

detect changes in contrast of an illuminated
surface. Figure 3 provides a pictorial of the
PocketBot after the necessary modifications
were made to enable the detection of defects by

the robot.

Figure 1 PocketBot

SIMULATION AND VISUALIZATION

TOOL

During the initial stages of the research a
simulation and visualization tool was developed

in order to test various robot designs and route

planning. Figure 2 provides an illustration of the
simulation and visualization tool

_ _ _ _J .._l _:

v_

Figure 2 Simulation and Visualization Tool

The simulation and visualization tool consisted

of a configurable virtual workspace with user
selectable view and light source orientation.

Various graphic effects such as perspective,

object textures, and colors can be modified by
the user. Standard visual tools, specifically

zooming and panning, are available within the
tool. The capability tbr command tool
automation was also built into the visualization

tool.

Figure 3 Enhanced PocketBot

The two LED illuminators are the white items

on the front and side of the robot in Figure 3,

which were wrapped with cellophane tape to

diffuse the provided light source. One LED
illuminmor was utilized for track following and

one LED illuminator was used to provide light
for crack detection. A total of four CdS sensors

were used on the final design of the robot. Two
of these CdS sensors were used for path

following and two were utilized for defect
detection. Note that the two CdS sensors on the

front of the PocketBot are the path following
sensors while the two CdS sensors mounted on
the side of the robot were used for crack

detection on vertical surfaces. The white items
on the back of the PocketBot are the wheel

encoders. The serial cable pictured in Figure 3
is connected to the serial port of the robot and
was used to communicate with the PocketBot.

A neural network was employed to detect the

presence of the defects or cracks based upon the
readings of the CdS sensors and the wheel

encoderreadings.A geneticalgorithmwasused
to evolvethedesignoftheneuralnetwork.

'selected'theoptimalnumberof hiddenlayer
neuronstobe179forthefinaldesign.

Neural Network

Typically, neural networks must be trained.

Training occurs by providing the network with a

large number of inputs for which the
corresponding output is known. In other words,
the neural network designer will provide the

network (i.e., the "student") with a host of

problems, but the designer will also provide the
answers.

The network is typically trained by a process

known as "supervised learning" (i.e., a repetitive

presentation of corresponding inputs and desired

outputs). Network "learning" occurs by
adjusting the input weights (wi) in such a way as

to increase the likelihood of getting the correct

answer. The procedure (algorithm) utilized to
modify the weights accounts for most of the
differences between the various neural network

models (e.g., back-propagation, radial basis,

Hebbian learning, etc.).

At some point in the training process, an
effective network must begin to generalize. This
means that the network can successfully solve

problems that it has not been exposed to during

the training process. Simple memorization of

the training data is not sufficient.

The neural network design chosen for this
research is a feed-forward network and was

trained using back propagation. As will be
discussed in the next section, a genetic algorithm

was utilized to optimize the number of input
measurement records and hidden layer neurons

used in the neural network. Figure 4 illustrates
the neural network utilized in this research for

defect or crack detection. The inputs consist of

the low CdS sensor reading, the high CdS sensor

reading, the difference between the sensor
readings, the left encoder value, and the right
encoder value. These inputs are provided to the

network for the current time step, six previous

time steps, and six future time steps. The

genetic algorithm was utilized to optimize the
number of past and future time steps utilized in
the neural network. The genetic algorithm also

One of the major obstacles during the neural

network portion of the research was the

generation of sufficient quantities of training
data. A training course, shown in Figure 5, was

designed specifically for the purpose of

generating training data.

A typical set of training data is also pictured in
Figure 5. The training data set on the left is a

complete run and consists of top CdS sensor,
bottom CdS sensor, left encoder, and right

encoder measurements. The training data shown

on the lower right in Figure 5 is the same data as

provided on the lower left except that the x-axis
has been restricted to the range of 240 to 320
seconds.

In order to generate the vast quantity of data

required for training the neural network, the
robot was repeatedly exposed to the training
course and the CdS sensor and encoder readings

were recorded. This data was then organized

and the utilized in the training of the neural
network.

Once the training data was generated, a target
vector had to be constructed in order to train the

neural network. The network was designed with

two output neurons: a defect neuron and an
orientation neuron. The target vector for the
defect neuron was selected such that one equals

a defect and zero corresponds to no defect. The
orientation vector was chosen such that 1

corresponds to a 45 deg orientation, 0 equals a
zero or vertical orientation, and -1 equals a

negative 45 deg orientation.

After successful training of the neural network,

the network would output a value close to one
for the defect neuron when a crack or defect was
encountered. The orientation neuron then allows

the user to estimate the orientation of the defect

by outputting the a value between -1 and +1 (-1
= -45 deg, 0 = 0 deg, and +l = +45 deg).

Figure 4 Crack ID Neural Network Architecture

/

Ncliral Net_xork "FralllHlg Data

m

"op CdS Sen_or Bottom CdS Sen_or

_eff Encoaer _ht Enter

.r, _ ,

)_ ii ? ,:'_':_ ' ii " 0:

c. b "

w
25O i

075

_ 1!illIItilllI!lHillilli I!llllli i
D IO0 200 300 400 500 600

fu'ne Axis [Data Point IO]

_u

t
I

4

,, o ; 5"

Netiral Net_,_.ork Training Dala

(,'<_,_m ed)

Top COS Sensor Bottom Oils Sensor

Left Encoder Right Encooer

[t . i r , , !] ; ,i 1 , i , , , _ _ ,

.... _ 1 ' t I ! I

I' , ' , I _ I il I
-' ' t i +

_-"°- t' : t I ,i I |
o i !" 4]

il
C, rlO -L.!. t :

250 2_0 270 280 290 300 310

Tul3e AxIS [Oata Point I0]

Figure 5 Neural Network Training Data

Genetic Algorithm

Simply stated, a genetic algorithm is a
computational search procedure that starts with a

set of possible solutions, or members of the

population, and iteratively modifies the
population members in such a way as to

minimize (or maximize) a particular fitness

(error) index. The iterative, or evolutionary

changes that occur in such a population are
governed by rules which seek to emulate natural

evolutionary theory, i.e., "natural selection". To
form a new generation of solutions, the

population members from the previous
generation who perform the best (lowest error

index) are carried forward for "reproduction".

Each member of the population "competes" with

every other member for the chance to reproduce.
A simple flowchart of the genetic algorithm is

shown in Figure 6. A new generation is formed
in the darkened boxes.

Evaluate Populafiol_

Select Breeding Pairs _9

Crosso',er (klrccd }

M ulat ion

Evaluate Population I

?? Converged ?'! /

It

Figure 6 Simple GA Flowchart

In the design of a neural network for a particular

application, it is typically not known a priori
what the size and structure of the network

should be (i.e., how large and complex to make

the artificial "brain. A genetic algorithm (GA)
can be used to "optimize" the size of the

network. It was assumed that a two layer neural
network would be employed, however the

number of hidden layer neurons and the number
of input data records to the network were

optimized by the genetic algorithm.

The encoding scheme used for the genetic

algorithm consisted of binary encoding on two

variables. Eight bits, which allow 256 distinct
values, were used to represent the number of

hidden layer neurons. Three bits were utilized
for the time records, which allows for 8 distinct

choices (000 through 111). These eight choices

are directly translated into an integer r with a

range of 0 to 7. Additionally, the variable r may
be converted to the number of past (and fulure)

time records by the formula.

hA9 = 2*(r + 1)

The range of n_p is 2 through 16 where n_p

must be an even number. The assumption was
made that the same number of past time records
as "future" time records would be used in the

network (e.g., if we use data at ti-1, then we use

data at ti+l.). Note that this symmetry about

the evaluation point (ti) requires that the

evaluation be delayed until a certain number

(n_p) of future data samples are available.

The genetic algorithm will try to minimize the
following function:

Obj(r, n_hl) = lO(e_nn/O.03) * (In(r+ 1) + 1) *

(log(n_hD + 1)

Where e_nn is the neural network training error
(_mean sq. error) and e_nn = e_nn(n p, n_hl),

and n_p = n_p(r). Note that n_hl represents the
number of hidden layer neurons.

For each(r, n_hl)pair (whichsizestheneural
network),thenetworkis trainedfor 600epochs
in an attemptto reachan errorgoal of 0.04.
Manynetworksdidnotreachthetraininggoalof
0.04.Thisparticularobjectivefunctionseverely
penalizesnetworksthatareunableto reachthe
targetedtrainingerrorgoalor0.04.Thenurnber
of timerecords(-r) utilizedby thenetworkis
penalizedto a greaterextentthanthenumberof
biddenlayerneuronssincemaintaininga large
amountof sensordatain RAM on therobotis
difficult (TheParallaxStampprocessorhasonly
26bytesof RAMI).

Thenumberof individualsin thepopulationwas
chosento be 10whilethemaximumnumberof

generations was set to 100. Elitism and linear

fitness scaling and limitation were utilized in the
genetic algorithm. The selection _br

reproduction was done with Stochastic'

Universal Sampling. Also, standard single-point
crossover with a mutation rate of-5% was

utilized in the genetic algorithm.

r'-_Q

The genetic algorithm selected r=2 and number

of hidden layers equal to 179 as the "best"
solution as illustrated in Figure 7. This

data, includes a low-pass filter, hosts the actual

neural network, and indicates the presence of a
crack and its orientation. Note that the sensor
and encoder results from the robot were sent

from the robot through the serial cable to this
Win32 program, which used the neural network

to evaluate these measurements. Figure 8

illustrates this Win32 application.

h..llnml_h, m_nm _.._:ZIil_7_%_'_ '--"--"-"_'_/_!_+_'_' d

Itl$Ot OLJIpLLt }-],'

N,_,lr_i t_er,_or_ t-eSUHS Vite

NeuIM fletwoe_ Confit.Jtae_ion File

1

Thf_hOICIs

M.gnraldo

[]

0

corresponds to using 6 past,
"future" data sets in the NN evaluation. Note

that the execution time for the GA on a single

computer was approximately 60 hours

1 current, and 6
Finishe_ ev_lua_r_ 216

Genel=c A_g_lhm Gen_ra{,o_l I_.tl_ce_s u_lmeg Set 2K?

i

IB51

Iso[...

ae_mho,,

Figure 7 GA Evaluation Results

A Win32 application was developed which
controls the serial i/o, displays the sensor output

Figure 8 Neural Network Analyzer

The evolutionary designed robot was subjected

to various evaluation courses including a straight
track (see Figure 9) and an airfoil shaped
evaluation course. The square box in Figure 8

was normally green and turned red only in the

presence of a defect or crack. The dial indicator
on the application provided the user with
orientation of the crack or defect.

The application displays the CdS sensor and
encoder measurements as the robot moves along
the evaluation track. The user must select the

neural network configuration file, the network

results file, and the sensor output file prior to

execution. The user also has the capability to set
the magnitude and phase thresholds, which

govern the sensitivity of the network to spikes in
the data.

' 0,5
"5

"5
0
-E
o 0

Z

-0.5
3O 40 50 60 70 80

I

9O

/1

I f

I00 1 tO 120

g
o.5

O.
J

"5

0
O
-E

._-Q5
tD

Z

Neural Network Results, Evaluation Track

s t_J

[' _//: Ii

\

i

6O
- 1 1........ .L......

30 4O 50

:_ _ ,

l !

L_ L J

70 80 90

Time [sec]

_J

'_/@j\"' i- "

LI

100 110 120

Figure 9 Evaluation Course and Evaluation Results

Note in Figure 9 that the peaks in the
magnitude (defect neuron) and phase

(orientation neuron) plots correspond to the
lines or "cracks" on the evaluation track.

Also, the +l/-I phase measurement coincide
with the +45/-45 degree oriented "crack" on
the evaluation course.

CONCLUSIONS

In general, the detect detection network

worked well given the limited time applied to
the development of robust training data. The

robot was reliably able to detect the presence

of cracks on the straight evaluation track, but

had problems with the airfoil shaped track due
to the variable standoff distances of the CdS

sensors when the robot was turning. The

network is quite sensitive to the standoff
distance of the CdS sensors. The network is

also sensitive to the angle of incidence
between the LED light source and the surface,
which made detection of the defects difficult

when turning. In order to improve the

performance of the robot additional research
should be performed to investigate other

sensor types for defect detection and accurate
standoff distances.

